The MPAMBWCAP_EL2 characteristics are:
Allows software executing at EL2 to provide MPAMBWCAP_EL2.CAP as an upper bound to MPAMBW1_EL1.MAX.
If FEAT_SME is implemented, the upper bound also applies to MPAMBWSM_EL1.MAX when executing at EL1: the maximum bandwidth allowed for the PE is MIN(MPAMBWSM_EL1.MAX, MPAMBWCAP_EL2.CAP).
If the Effective value of HCR_EL2.{E2H,TGE} is not {1,1}:
If MPAMBWCAP_EL2.ENABLED is 1, a PARTID that has used more than min(CAP,MAX) is given no access to additional bandwidth.
This register is present only when FEAT_MPAM_PE_BW_CTRL is implemented and MPAMIDR_EL1.HAS_HCR == 1. Otherwise, direct accesses to MPAMBWCAP_EL2 are UNDEFINED.
This register has no effect if EL2 is not enabled in the current Security state.
MPAMBWCAP_EL2 is a 64-bit register.
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
HW_SCALE_ENABLE | ENABLED | RES0 | |||||||||||||||||||||||||||||
CAP |
Enables hardware bandwidth scaling of the MPAMBWCAP_EL2.CAP value.
HW_SCALE_ENABLE | Meaning |
---|---|
0b0 |
PE-side memory bandwidth control hardware scaling for EL2 capping is disabled. |
0b1 |
PE-side memory bandwidth control hardware scaling for EL2 capping is enabled. |
The reset behavior of this field is:
Reserved, RES0.
Enables the PE-side memory bandwidth control capping by EL2.
ENABLED | Meaning |
---|---|
0b0 |
The PE-side memory bandwidth control capping by EL2 is disabled. |
0b1 |
The PE-side memory bandwidth control capping by EL2 is enabled. |
The reset behavior of this field is:
Reserved, RES0.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
CAP |
Upper bound to the maximum memory bandwidth allocated to the current PARTID in MPAMBW1_EL1.MAX, MPAMBW0_EL1.MAX and MPAMBWSM_EL1.MAX.
The value is represented as a multiplier of the available bandwidth for the PE. The value is represented in base-2 fixed-point format.
Bits [31:16] represent the integer part of the value.
Bits [15:(16 - MPAMBWIDR_EL1.BWA_WD)] represent the fractional part of the value. When MPAMBWIDR_EL1.BWA_WD indicates a width less than 16 bits, bits [(15 - MPAMBWIDR_EL1.BWA_WD):0] are RES0.
The value set in the MAX field must be less than or equal to this upper bound.
The reset behavior of this field is:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | CAP |
Reserved, RES0.
Upper bound to the maximum memory bandwidth allocated to the current PARTID in MPAMBW1_EL1.MAX, MPAMBW0_EL1.MAX and MPAMBWSM_EL1.MAX.
The value is represented as a fraction of the available bandwidth for the PE. The value is represented in base-2 fixed-point format.
Bits [15:(16 - MPAMBWIDR_EL1.BWA_WD)] represent the fractional part of the value. When MPAMBWIDR_EL1.BWA_WD indicates a width less than 16 bits, bits [(15 - MPAMBWIDR_EL1.BWA_WD):0] are RES0.
The value set in the MAX field must be less than or equal to this upper bound.
The reset behavior of this field is:
Accesses to this register use the following encodings in the System register encoding space:
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b100 | 0b1010 | 0b0101 | 0b110 |
if !(IsFeatureImplemented(FEAT_MPAM_PE_BW_CTRL) && MPAMIDR_EL1.HAS_HCR == '1') then UNDEFINED; elsif PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EffectiveHCR_EL2_NVx() IN {'1x1'} then X[t, 64] = NVMem[0x910]; elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MPAMBW3_EL3.nTRAPLOWER == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && MPAM3_EL3.TRAPLOWER == '1' then UNDEFINED; elsif HaveEL(EL3) && EL3SDDUndefPriority() && MPAMBW3_EL3.nTRAPLOWER == '0' then UNDEFINED; elsif HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MPAMBW3_EL3.nTRAPLOWER == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else X[t, 64] = MPAMBWCAP_EL2; elsif PSTATE.EL == EL3 then X[t, 64] = MPAMBWCAP_EL2;
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b100 | 0b1010 | 0b0101 | 0b110 |
if !(IsFeatureImplemented(FEAT_MPAM_PE_BW_CTRL) && MPAMIDR_EL1.HAS_HCR == '1') then UNDEFINED; elsif PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EffectiveHCR_EL2_NVx() IN {'1x1'} then NVMem[0x910] = X[t, 64]; elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MPAMBW3_EL3.nTRAPLOWER == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && MPAM3_EL3.TRAPLOWER == '1' then UNDEFINED; elsif HaveEL(EL3) && EL3SDDUndefPriority() && MPAMBW3_EL3.nTRAPLOWER == '0' then UNDEFINED; elsif HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MPAMBW3_EL3.nTRAPLOWER == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else MPAMBWCAP_EL2 = X[t, 64]; elsif PSTATE.EL == EL3 then MPAMBWCAP_EL2 = X[t, 64];
15/12/2024 22:27; 5e0a212688c6bd7aee92394b6f5e491b4d0fee1d
Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.